# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 1-[4-(4-Nitrophenyl)piperazin-1-yl]-2-(4,5,6,7-tetrahydrothieno[3,2-c]pyridin-5-yl)ethanone

### Shuai Mu,<sup>a</sup> Miao Yang,<sup>b</sup> Deng-Ke Liu<sup>c\*</sup> and Chang-Xiao Liu<sup>c</sup>

<sup>a</sup>School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, <sup>b</sup>Tianjin Medical University, Tianjin 300070, People's Republic of China, and CTianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China Correspondence e-mail: liudk@tjipr.com

Received 21 September 2010; accepted 30 September 2010

Key indicators: single-crystal X-ray study; T = 113 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.088; data-to-parameter ratio = 17.0.

The title compound, C<sub>19</sub>H<sub>22</sub>N<sub>4</sub>O<sub>3</sub>S, comprises a thienopyridine moiety which is characteristic for antiplatelet agents of the clopidogrel class of compounds. In the crystal, inversion dimers are formed through pairs of  $C-H\cdots O$  interactions. The benzene ring plane and the nitro plane are almost coplanar, with a dihedral angle of 0.83 (2)°. The piperazine ring adopts a chair conformation.

#### **Related literature**

For background to the bioactivity and applications of the antiplatelet agent clopidogrel, see, for example: Muller et al. (2003); Savi et al. (1994); Sharis et al. (1998). For the synthesis of other derivatives with thienopyridine, see: Cheng (2009).



#### **Experimental**

Crystal data C19H22N4O3S  $M_r = 386.47$ Triclinic,  $P\overline{1}$ 

a = 6.1315 (7) Å b = 8.8552 (10) Åc = 17.025 (2) Å

| $\alpha = 84.101 \ (8)^{\circ}$ |  |
|---------------------------------|--|
| $\beta = 83.385 \ (9)^{\circ}$  |  |
| $\gamma = 74.635 \ (6)^{\circ}$ |  |
| $V = 882.87 (18) \text{ Å}^3$   |  |
| Z = 2                           |  |

#### Data collection

| 10552 measured reflections           |
|--------------------------------------|
| 4169 independent reflections         |
| 3402 reflections with $I > 2\sigma($ |
| $R_{\rm int} = 0.025$                |
|                                      |
|                                      |
|                                      |

Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.032$ | 245 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.088$               | H-atom parameters constrained                              |
| S = 1.08                        | $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$  |
| 4169 reflections                | $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ |

Mo  $K\alpha$  radiation  $\mu = 0.21 \text{ mm}^{-1}$ 

 $0.32 \times 0.30 \times 0.28 \text{ mm}$ 

 $I > 2\sigma(I)$ 

T = 113 K

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                        | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------------------|--------------|-------------------------|------------------------|--------------------------------------|
| $C1 - H1 \cdots O3^{i}$<br>$C5 - H5A \cdots O1^{ii}_{}$ | 0.95<br>0.99 | 2.47<br>2.56            | 3.346 (2)<br>3.475 (2) | 154<br>153                           |
| $C6-H6B\cdotsO1^{m}$                                    | 0.99         | 2.59                    | 3.420 (2)              | 142                                  |

Symmetry codes: (i) x - 1, y + 1, z - 1; (ii) -x, -y + 2, -z; (iii) x + 1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

The authors thank Mr Hai-Bin Song of Nankai University and Mr Zhi-Qiang Cai of Tianjin Institute of Pharmaceutical Research for their helpful suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2278).

#### References

- Cheng, D. (2009). PhD thesis, Tianjin University, China.
- Muller, I., Besta, F., Schulz, C., Li, Z., Massberg, S. & Gawaz, M. (2003). Circulation, 108, 2195-2197.
- Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Savi, P., Combalbert, J., Gaich, C., Rouchon, M. C., Maffrand, J. P., Berger, Y. & Herbert, J. M. (1994). Thromb. Haemost. 72, 313-317.

Sharis, P. J., Cannon, C. P. & Loscalzo, J. (1998). Ann. Intern. Med. 129, 394-405

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o2762 [doi:10.1107/S1600536810039085]

## 1-[4-(4-Nitrophenyl)piperazin-1-yl]-2-(4,5,6,7-tetrahydrothieno[3,2-c]pyridin-5-yl)ethanone

## S. Mu, M. Yang, D.-K. Liu and C.-X. Liu

#### Comment

Clopidogrel is an oral, thienopyridine class antiplatelet agent used to inhibit blood clots in coronary artery disease, peripheral vascular disease, and cerebrovascular disease (Muller *et al.*, 2003; Savi *et al.*, 1994; Sharis *et al.*, 1998). The crystal structure of the title compound (I), a derivative with thienopyridine, synthesised through the transformation of clopidogrel, is reported here.

The C14–C19 benzene ring plane and the nitro plane defined by O2/O3/N4 are almost coplanar, with a dihedral angle of  $0.83^{\circ}$  (Fig. 1). The piperazine ring shows a stable chair conformation. The bond angle in the ring ranges from 107.24–112.67°. The dihedrals formed between C10–C13 plane and C11/C12/N3 plane, C10–C13 plane and C10/C13/N2 plane are 43.32° and 55.40°, respectively. The packing is realised by C—H…O (Table 1) interactions leading to centrosymmetric dimers.

#### **Experimental**

2-Chloro-1-(4-(4-nitrophenyl)piperazin-1-yl)ethanone 4 g (0.014 mol) and anhydrous  $K_2CO_3$  7.7 g (0.056 mol) were dissolved in 40 ml toluene. The mixture was heated to 373 K. Then 2.2 g (0.015 mol) of 4,5,6,7-tetrahydrothieno[3,2-*c*] pyridine was added dropwise into the mixture, and stirred for 16 h under room temperature.  $K_2CO_3$  was removed after filtration and the reaction solution was concentrated under reduced pressure to get yellow powder as a crude product. The powder was dissolved in a mixture of petroleum ether (20 ml) and acetone (4 ml) at 277 K, then white crystals were grown slowly.

#### Refinement

All the H atoms were located on their parent atoms with C—H = 0.95 Å (aromatic CH) and 0.99 Å (CH2),  $U_{iso} = 1.2U_{eq}(C)$ .

## **Figures**



Fig. 1. The molecular structure of (I), Displacement ellipsoids are drawn at the 50% probability level.

#### 1-[4-(4-Nitrophenyl)piperazin-1-yl]-2-(4,5,6,7- tetrahydrothieno[3,2-c]pyridin-5-yl)ethanone

| Crystal data                                                    |                                                       |
|-----------------------------------------------------------------|-------------------------------------------------------|
| C <sub>19</sub> H <sub>22</sub> N <sub>4</sub> O <sub>3</sub> S | Z = 2                                                 |
| $M_r = 386.47$                                                  | F(000) = 408                                          |
| Triclinic, <i>P</i> T                                           | $D_{\rm x} = 1.454 \ {\rm Mg \ m}^{-3}$               |
| <i>a</i> = 6.1315 (7) Å                                         | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71070$ Å |

b = 8.8552 (10) Å c = 17.025 (2) Å  $\alpha = 84.101 (8)^{\circ}$   $\beta = 83.385 (9)^{\circ}$   $\gamma = 74.635 (6)^{\circ}$  $V = 882.87 (18) \text{ Å}^{3}$ 

#### Data collection

| Rigaku Saturn CCD area-detector<br>diffractometer                     | 4169 independent reflections                                              |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: rotating anode                                      | 3402 reflections with $I > 2\sigma(I)$                                    |
| confocal                                                              | $R_{\rm int} = 0.025$                                                     |
| Detector resolution: 7.31 pixels mm <sup>-1</sup>                     | $\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 1.2^{\circ}$ |
| $\omega$ and $\phi$ scans                                             | $h = -8 \rightarrow 8$                                                    |
| Absorption correction: multi-scan<br>(CrystalClear; Rigaku/MSC, 2005) | $k = -11 \rightarrow 11$                                                  |
| $T_{\min} = 0.935, T_{\max} = 0.943$                                  | $l = -22 \rightarrow 21$                                                  |
| 10552 measured reflections                                            |                                                                           |
|                                                                       |                                                                           |

#### Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                                               |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                                                           |
| $R[F^2 > 2\sigma(F^2)] = 0.032$                        | H-atom parameters constrained                                                                                      |
| $wR(F^2) = 0.088$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0455P)^2 + 0.1626P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                |
| <i>S</i> = 1.08                                        | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                                |
| 4169 reflections                                       | $\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$                                                                |
| 245 parameters                                         | $\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$                                                             |
| 0 restraints                                           | Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008),<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Primary atom site location: structure-invariant direct | E dia dia ama (Cining 0.010 (7)                                                                                    |

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.019 (7)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Cell parameters from 2732 reflections

 $\theta = 1.2 - 27.9^{\circ}$ 

 $\mu = 0.21 \text{ mm}^{-1}$ 

Block, yellow

 $0.32 \times 0.30 \times 0.28 \text{ mm}$ 

T = 113 K

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x             | у            | Ζ              | $U_{\rm iso}*/U_{\rm eq}$ |
|------|---------------|--------------|----------------|---------------------------|
| S1   | 0.30943 (5)   | 0.92591 (3)  | -0.249539 (17) | 0.01923 (11)              |
| 01   | -0.12392 (14) | 0.78988 (11) | 0.05647 (6)    | 0.0249 (2)                |
| O2   | 1.01128 (18)  | 0.15750 (13) | 0.58507 (6)    | 0.0376 (3)                |
| 03   | 0.7589 (2)    | 0.02733 (13) | 0.58411 (7)    | 0.0451 (3)                |
| N1   | 0.22099 (16)  | 0.69145 (11) | -0.00851 (6)   | 0.0145 (2)                |
| N2   | 0.32167 (16)  | 0.71481 (11) | 0.16167 (6)    | 0.0148 (2)                |
| N3   | 0.44060 (16)  | 0.56269 (11) | 0.31518 (6)    | 0.0156 (2)                |
| N4   | 0.8425 (2)    | 0.13723 (14) | 0.55919 (7)    | 0.0275 (3)                |
| C1   | 0.0996 (2)    | 0.85073 (14) | -0.27522 (7)   | 0.0208 (3)                |
| H1   | 0.0370        | 0.8743       | -0.3249        | 0.025*                    |
| C2   | 0.0340 (2)    | 0.75339 (14) | -0.21584 (7)   | 0.0183 (2)                |
| H2   | -0.0804       | 0.7006       | -0.2193        | 0.022*                    |
| C3   | 0.15476 (19)  | 0.73858 (13) | -0.14760 (7)   | 0.0147 (2)                |
| C4   | 0.31018 (19)  | 0.82610 (13) | -0.15692 (7)   | 0.0147 (2)                |
| C5   | 0.45773 (19)  | 0.83687 (14) | -0.09431 (7)   | 0.0162 (2)                |
| H5A  | 0.3991        | 0.9385       | -0.0700        | 0.019*                    |
| H5B  | 0.6148        | 0.8302       | -0.1181        | 0.019*                    |
| C6   | 0.45572 (19)  | 0.70088 (13) | -0.03118 (7)   | 0.0156 (2)                |
| H6A  | 0.5467        | 0.6011       | -0.0523        | 0.019*                    |
| H6B  | 0.5245        | 0.7176       | 0.0160         | 0.019*                    |
| C7   | 0.1199 (2)    | 0.64098 (14) | -0.07174 (7)   | 0.0163 (2)                |
| H7A  | -0.0446       | 0.6535       | -0.0570        | 0.020*                    |
| H7B  | 0.1916        | 0.5287       | -0.0792        | 0.020*                    |
| C8   | 0.08392 (19)  | 0.77300 (13) | 0.04926 (7)    | 0.0161 (2)                |
| C9   | 0.1956 (2)    | 0.83986 (14) | 0.10806 (7)    | 0.0171 (2)                |
| H9A  | 0.3008        | 0.8981       | 0.0788         | 0.021*                    |
| H9B  | 0.0775        | 0.9147       | 0.1396         | 0.021*                    |
| C10  | 0.4469 (2)    | 0.78077 (14) | 0.21157 (7)    | 0.0173 (2)                |
| H10A | 0.3387        | 0.8607       | 0.2433         | 0.021*                    |
| H10B | 0.5515        | 0.8332       | 0.1775         | 0.021*                    |
| C11  | 0.5819 (2)    | 0.65394 (14) | 0.26673 (7)    | 0.0181 (2)                |
| H11A | 0.7032        | 0.5820       | 0.2349         | 0.022*                    |
| H11B | 0.6556        | 0.7033       | 0.3022         | 0.022*                    |
| C12  | 0.2908 (2)    | 0.51145 (14) | 0.26835 (7)    | 0.0172 (2)                |
| H12A | 0.1800        | 0.4685       | 0.3047         | 0.021*                    |
| H12B | 0.3824        | 0.4263       | 0.2358         | 0.021*                    |
| C13  | 0.1640 (2)    | 0.64430 (14) | 0.21457 (7)    | 0.0177 (2)                |
| H13A | 0.0697        | 0.6039       | 0.1826         | 0.021*                    |
| H13B | 0.0615        | 0.7254       | 0.2471         | 0.021*                    |
| C14  | 0.5398 (2)    | 0.45722 (13) | 0.37518 (7)    | 0.0157 (2)                |
| C15  | 0.7310 (2)    | 0.47506 (14) | 0.40870 (7)    | 0.0194 (3)                |
| H15  | 0.7935        | 0.5608       | 0.3898         | 0.023*                    |
| C16  | 0.8282 (2)    | 0.37062 (15) | 0.46814 (7)    | 0.0212 (3)                |
| H16  | 0.9579        | 0.3837       | 0.4895         | 0.025*                    |
| C17  | 0.7371 (2)    | 0.24656 (14) | 0.49676 (7)    | 0.0207 (3)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# supplementary materials

| C18 | 0.5485 (2) | 0.22540 (14) | 0.46630 (7) | 0.0214 (3) |
|-----|------------|--------------|-------------|------------|
| H18 | 0.4861     | 0.1404       | 0.4867      | 0.026*     |
| C19 | 0.4521 (2) | 0.32864 (14) | 0.40612 (7) | 0.0194 (3) |
| H19 | 0.3237     | 0.3131       | 0.3849      | 0.023*     |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$     |
|-----|--------------|--------------|--------------|---------------|---------------|--------------|
| S1  | 0.02648 (18) | 0.01618 (16) | 0.01532 (16) | -0.00697 (12) | -0.00135 (12) | 0.00086 (11) |
| 01  | 0.0145 (4)   | 0.0317 (5)   | 0.0297 (5)   | -0.0068 (4)   | 0.0002 (4)    | -0.0080 (4)  |
| 02  | 0.0329 (6)   | 0.0445 (6)   | 0.0350 (6)   | -0.0089 (5)   | -0.0162 (5)   | 0.0104 (5)   |
| O3  | 0.0627 (8)   | 0.0347 (6)   | 0.0444 (7)   | -0.0234 (6)   | -0.0272 (6)   | 0.0207 (5)   |
| N1  | 0.0127 (5)   | 0.0165 (5)   | 0.0148 (5)   | -0.0046 (4)   | -0.0031 (4)   | 0.0004 (4)   |
| N2  | 0.0149 (5)   | 0.0158 (5)   | 0.0154 (5)   | -0.0068 (4)   | -0.0027 (4)   | 0.0006 (4)   |
| N3  | 0.0160 (5)   | 0.0161 (5)   | 0.0164 (5)   | -0.0074 (4)   | -0.0027 (4)   | 0.0005 (4)   |
| N4  | 0.0324 (6)   | 0.0252 (6)   | 0.0230 (6)   | -0.0035 (5)   | -0.0069 (5)   | 0.0023 (5)   |
| C1  | 0.0269 (6)   | 0.0191 (6)   | 0.0169 (6)   | -0.0045 (5)   | -0.0062 (5)   | -0.0025 (5)  |
| C2  | 0.0210 (6)   | 0.0172 (5)   | 0.0179 (6)   | -0.0049 (5)   | -0.0042 (5)   | -0.0045 (5)  |
| C3  | 0.0148 (5)   | 0.0117 (5)   | 0.0166 (6)   | -0.0014 (4)   | -0.0016 (4)   | -0.0022 (4)  |
| C4  | 0.0162 (5)   | 0.0121 (5)   | 0.0148 (5)   | -0.0021 (4)   | -0.0010 (4)   | -0.0009 (4)  |
| C5  | 0.0141 (5)   | 0.0165 (5)   | 0.0187 (6)   | -0.0057 (4)   | -0.0020 (5)   | 0.0008 (4)   |
| C6  | 0.0116 (5)   | 0.0170 (5)   | 0.0178 (6)   | -0.0029 (4)   | -0.0033 (4)   | 0.0013 (4)   |
| C7  | 0.0182 (6)   | 0.0163 (5)   | 0.0163 (6)   | -0.0071 (4)   | -0.0048 (5)   | 0.0006 (4)   |
| C8  | 0.0167 (6)   | 0.0136 (5)   | 0.0178 (6)   | -0.0040 (4)   | -0.0037 (5)   | 0.0020 (4)   |
| C9  | 0.0185 (6)   | 0.0149 (5)   | 0.0184 (6)   | -0.0048 (4)   | -0.0021 (5)   | -0.0011 (4)  |
| C10 | 0.0191 (6)   | 0.0174 (5)   | 0.0183 (6)   | -0.0092 (5)   | -0.0036 (5)   | -0.0006 (5)  |
| C11 | 0.0168 (6)   | 0.0203 (6)   | 0.0199 (6)   | -0.0101 (5)   | -0.0026 (5)   | 0.0008 (5)   |
| C12 | 0.0171 (6)   | 0.0182 (6)   | 0.0191 (6)   | -0.0096 (5)   | -0.0036 (5)   | 0.0010 (5)   |
| C13 | 0.0144 (5)   | 0.0198 (6)   | 0.0202 (6)   | -0.0075 (4)   | -0.0016 (5)   | 0.0004 (5)   |
| C14 | 0.0166 (5)   | 0.0151 (5)   | 0.0148 (5)   | -0.0033 (4)   | 0.0017 (4)    | -0.0037 (4)  |
| C15 | 0.0205 (6)   | 0.0202 (6)   | 0.0191 (6)   | -0.0076 (5)   | -0.0021 (5)   | -0.0024 (5)  |
| C16 | 0.0208 (6)   | 0.0236 (6)   | 0.0203 (6)   | -0.0060 (5)   | -0.0042 (5)   | -0.0039 (5)  |
| C17 | 0.0245 (6)   | 0.0190 (6)   | 0.0162 (6)   | -0.0012 (5)   | -0.0023 (5)   | -0.0010 (5)  |
| C18 | 0.0264 (7)   | 0.0175 (6)   | 0.0204 (6)   | -0.0069 (5)   | -0.0003 (5)   | -0.0003 (5)  |
| C19 | 0.0204 (6)   | 0.0190 (6)   | 0.0199 (6)   | -0.0070 (5)   | -0.0025 (5)   | -0.0015 (5)  |

Geometric parameters (Å, °)

| S1—C1  | 1.7127 (13) | С6—Н6В   | 0.9900      |
|--------|-------------|----------|-------------|
| S1—C4  | 1.7265 (12) | С7—Н7А   | 0.9900      |
| O1—C8  | 1.2362 (14) | С7—Н7В   | 0.9900      |
| O2—N4  | 1.2317 (16) | C8—C9    | 1.5219 (16) |
| O3—N4  | 1.2327 (16) | С9—Н9А   | 0.9900      |
| N1—C8  | 1.3524 (16) | С9—Н9В   | 0.9900      |
| N1—C7  | 1.4638 (14) | C10-C11  | 1.5160 (16) |
| N1—C6  | 1.4685 (14) | C10—H10A | 0.9900      |
| N2—C13 | 1.4628 (14) | C10—H10B | 0.9900      |
| N2—C10 | 1.4637 (14) | C11—H11A | 0.9900      |
| N2—C9  | 1.4690 (15) | C11—H11B | 0.9900      |
|        |             |          |             |

| N3—C14     | 1.3900 (15) | C12—C13       | 1.5115 (16) |
|------------|-------------|---------------|-------------|
| N3—C12     | 1.4662 (14) | C12—H12A      | 0.9900      |
| N3—C11     | 1.4674 (14) | C12—H12B      | 0.9900      |
| N4—C17     | 1.4491 (16) | C13—H13A      | 0.9900      |
| C1—C2      | 1.3558 (18) | С13—Н13В      | 0.9900      |
| C1—H1      | 0.9500      | C14—C15       | 1.4125 (17) |
| C2—C3      | 1.4251 (16) | C14—C19       | 1.4140 (16) |
| С2—Н2      | 0.9500      | C15—C16       | 1.3746 (17) |
| C3—C4      | 1.3658 (16) | C15—H15       | 0.9500      |
| C3—C7      | 1.5051 (16) | C16—C17       | 1.3818 (18) |
| C4—C5      | 1.5008 (16) | C16—H16       | 0.9500      |
| C5—C6      | 1.5311 (16) | C17—C18       | 1.3833 (18) |
| С5—Н5А     | 0.9900      | C18—C19       | 1.3768 (17) |
| С5—Н5В     | 0.9900      | C18—H18       | 0.9500      |
| С6—Н6А     | 0.9900      | С19—Н19       | 0.9500      |
| C1—S1—C4   | 92.11 (6)   | N2—C9—H9A     | 109.4       |
| C8—N1—C7   | 119.36 (10) | С8—С9—Н9А     | 109.4       |
| C8—N1—C6   | 123.35 (10) | N2—C9—H9B     | 109.4       |
| C7—N1—C6   | 113.03 (9)  | С8—С9—Н9В     | 109.4       |
| C13—N2—C10 | 107.24 (9)  | Н9А—С9—Н9В    | 108.0       |
| C13—N2—C9  | 110.12 (9)  | N2-C10-C11    | 111.11 (9)  |
| C10—N2—C9  | 109.88 (9)  | N2—C10—H10A   | 109.4       |
| C14—N3—C12 | 117.17 (9)  | C11-C10-H10A  | 109.4       |
| C14—N3—C11 | 117.63 (9)  | N2-C10-H10B   | 109.4       |
| C12—N3—C11 | 112.57 (9)  | C11—C10—H10B  | 109.4       |
| O2—N4—O3   | 122.75 (11) | H10A-C10-H10B | 108.0       |
| O2—N4—C17  | 118.95 (11) | N3—C11—C10    | 112.67 (10) |
| O3—N4—C17  | 118.30 (11) | N3—C11—H11A   | 109.1       |
| C2—C1—S1   | 111.59 (9)  | C10-C11-H11A  | 109.1       |
| C2—C1—H1   | 124.2       | N3—C11—H11B   | 109.1       |
| S1—C1—H1   | 124.2       | C10-C11-H11B  | 109.1       |
| C1—C2—C3   | 112.85 (11) | H11A—C11—H11B | 107.8       |
| С1—С2—Н2   | 123.6       | N3—C12—C13    | 112.06 (9)  |
| C3—C2—H2   | 123.6       | N3—C12—H12A   | 109.2       |
| C4—C3—C2   | 112.58 (11) | C13—C12—H12A  | 109.2       |
| C4—C3—C7   | 121.64 (10) | N3—C12—H12B   | 109.2       |
| C2—C3—C7   | 125.77 (10) | C13—C12—H12B  | 109.2       |
| C3—C4—C5   | 124.49 (11) | H12A—C12—H12B | 107.9       |
| C3—C4—S1   | 110.87 (9)  | N2—C13—C12    | 110.96 (9)  |
| C5—C4—S1   | 124.63 (9)  | N2—C13—H13A   | 109.4       |
| C4—C5—C6   | 108.25 (9)  | C12—C13—H13A  | 109.4       |
| C4—C5—H5A  | 110.0       | N2—C13—H13B   | 109.4       |
| С6—С5—Н5А  | 110.0       | С12—С13—Н13В  | 109.4       |
| C4—C5—H5B  | 110.0       | H13A—C13—H13B | 108.0       |
| C6—C5—H5B  | 110.0       | N3—C14—C15    | 121.43 (11) |
| H5A—C5—H5B | 108.4       | N3—C14—C19    | 121.51 (11) |
| N1—C6—C5   | 109.67 (9)  | C15—C14—C19   | 117.06 (11) |
| N1—C6—H6A  | 109.7       | C16—C15—C14   | 121.21 (11) |
| С5—С6—Н6А  | 109.7       | C16—C15—H15   | 119.4       |

# supplementary materials

| N1—C6—H6B      | 109.7        | C14—C15—H15     | 119.4        |
|----------------|--------------|-----------------|--------------|
| С5—С6—Н6В      | 109.7        | C15—C16—C17     | 119.90 (12)  |
| Н6А—С6—Н6В     | 108.2        | C15—C16—H16     | 120.0        |
| N1—C7—C3       | 109.44 (9)   | C17—C16—H16     | 120.0        |
| N1—C7—H7A      | 109.8        | C16—C17—C18     | 120.89 (12)  |
| С3—С7—Н7А      | 109.8        | C16—C17—N4      | 119.13 (12)  |
| N1—C7—H7B      | 109.8        | C18—C17—N4      | 119.98 (11)  |
| С3—С7—Н7В      | 109.8        | C19—C18—C17     | 119.43 (11)  |
| Н7А—С7—Н7В     | 108.2        | C19—C18—H18     | 120.3        |
| O1             | 122.19 (11)  | C17—C18—H18     | 120.3        |
| O1—C8—C9       | 120.27 (11)  | C18—C19—C14     | 121.51 (11)  |
| N1—C8—C9       | 117.51 (10)  | С18—С19—Н19     | 119.2        |
| N2—C9—C8       | 111.26 (9)   | C14—C19—H19     | 119.2        |
| C4—S1—C1—C2    | -0.24 (10)   | C9—N2—C10—C11   | -179.10 (9)  |
| S1—C1—C2—C3    | 0.11 (14)    | C14—N3—C11—C10  | -171.71 (10) |
| C1—C2—C3—C4    | 0.12 (15)    | C12—N3—C11—C10  | 47.41 (13)   |
| C1—C2—C3—C7    | 179.31 (11)  | N2-C10-C11-N3   | -54.79 (13)  |
| C2—C3—C4—C5    | 178.37 (10)  | C14—N3—C12—C13  | 170.61 (10)  |
| C7—C3—C4—C5    | -0.85 (17)   | C11—N3—C12—C13  | -48.32 (13)  |
| C2—C3—C4—S1    | -0.30 (13)   | C10—N2—C13—C12  | -62.45 (12)  |
| C7—C3—C4—S1    | -179.52 (9)  | C9—N2—C13—C12   | 178.02 (9)   |
| C1—S1—C4—C3    | 0.31 (9)     | N3—C12—C13—N2   | 56.93 (13)   |
| C1—S1—C4—C5    | -178.36 (10) | C12—N3—C14—C15  | 162.26 (10)  |
| C3—C4—C5—C6    | 16.48 (15)   | C11—N3—C14—C15  | 23.17 (16)   |
| S1—C4—C5—C6    | -165.03 (8)  | C12—N3—C14—C19  | -18.64 (16)  |
| C8—N1—C6—C5    | -87.64 (13)  | C11—N3—C14—C19  | -157.73 (11) |
| C7—N1—C6—C5    | 68.93 (12)   | N3-C14-C15-C16  | 179.86 (11)  |
| C4—C5—C6—N1    | -47.59 (12)  | C19—C14—C15—C16 | 0.72 (18)    |
| C8—N1—C7—C3    | 107.55 (12)  | C14—C15—C16—C17 | -0.80 (19)   |
| C6—N1—C7—C3    | -50.05 (12)  | C15—C16—C17—C18 | 0.11 (19)    |
| C4—C3—C7—N1    | 16.24 (15)   | C15-C16-C17-N4  | 179.73 (11)  |
| C2—C3—C7—N1    | -162.88 (11) | O2—N4—C17—C16   | -0.17 (18)   |
| C7—N1—C8—O1    | 9.29 (17)    | O3—N4—C17—C16   | 179.92 (13)  |
| C6—N1—C8—O1    | 164.47 (11)  | O2—N4—C17—C18   | 179.45 (12)  |
| C7—N1—C8—C9    | -172.84 (9)  | O3—N4—C17—C18   | -0.46 (19)   |
| C6—N1—C8—C9    | -17.67 (16)  | C16-C17-C18-C19 | 0.64 (19)    |
| C13—N2—C9—C8   | -68.22 (12)  | N4—C17—C18—C19  | -178.97 (11) |
| C10—N2—C9—C8   | 173.88 (9)   | C17-C18-C19-C14 | -0.72 (19)   |
| O1-C8-C9-N2    | 106.91 (12)  | N3-C14-C19-C18  | -179.10 (11) |
| N1—C8—C9—N2    | -71.00 (13)  | C15-C14-C19-C18 | 0.05 (18)    |
| C13—N2—C10—C11 | 61.22 (12)   |                 |              |
|                |              |                 |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}^{\ldots}\!A$ |
|----------------------------|-------------|--------------|--------------|------------------------------------|
| C1—H1···O3 <sup>i</sup>    | 0.95        | 2.47         | 3.346 (2)    | 154                                |
| C5—H5A···O1 <sup>ii</sup>  | 0.99        | 2.56         | 3.475 (2)    | 153                                |
| C6—H6B···O1 <sup>iii</sup> | 0.99        | 2.59         | 3.420 (2)    | 142                                |

Symmetry codes: (i) *x*-1, *y*+1, *z*-1; (ii) -*x*, -*y*+2, -*z*; (iii) *x*+1, *y*, *z*.

## Fig. 1

